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Unfolding rates for the diffusion-collision model
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In the diffusion-collision model, the unfolding rates are given by the likelihood of secondary structural
cluster dissociation. In this work, we introduce an unfolding rate calculation for proteins whose secondary
structural elements area helices, modeled from thermal escape over a barrier that arises from the free energy
in buried hydrophobic residues. Our results are in good agreement with currently accepted values for the
attempt rate.
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I. INTRODUCTION

In the diffusion-collision model of protein folding@1# the
protein is modeled using a collection of spheres connec
by flexible strings. The spheres represent the secon
structural elements such asa helices orb sheets~or clusters
of these secondary structures! called microdomains, that con
stitute the protein.

The folding process from a completely unfolded prote
to the the final native state is accomplished via diffus
through the solvent, collision, and finally coalescence of
microdomains. The state of the protein is defined by
number of pairings between the microdomains that
present at a given timet. The rate equations for transition
between these states can be written as

dP~ t !

dt
5K̂P~ t !, ~1!

whereP(t) is the vector of states andK̂ is a matrix contain-
ing the transition rates between the different states. A pro
having, say,q microdomains would involvep5q(q21)/2
pairings, 2p statesPi(t), and a 2p32p rate matrixK̂.

In general, the calculation of the elements of the rate m
trix K̂ is somewhat involved. The forward rates are the ra
of structural coalescence. In the diffusion-collision model
forward rates are calculated assuming the microdomains
fuse through a solvent environment, the space of which
limited by the length of the intervening strings and the v
der Waals radii of the microdomains. These microdoma
are assumed to be nascently formed, and their degree of
mation is given by a helix-coil transition theory calculatio
@2# ~as in AGADIR @3,4#! in the case ofa helices, or via a
combination of theory@5# and experiment@6# in the case of
b sheets. As the microdomains undergo diffusion, they
casionally collide. When this happens the microdomains c
lesce with a probabilityg, being held together by hydropho
bic interactions in the case ofa helices, or a combination o
hydrophobic and hydrogen bond interactions in the case ob
sheets. The coalescence probabilityg is given by the likeli-
hood that the microdomain is ina helical orb sheet form,
the percentage of hydrophobic area, and the likelihood
proper geometrical orientation upon collision.

The forward folding times between any two given sta
in the mean first passage time approximation@7# are given by
1063-651X/2001/64~5!/052902~3!/$20.00 64 0529
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LV~12g!

gDA
, ~2!

where V is the diffusion volume available to the micro
domain pair,A is the target area for collisions,D is the rela-
tive diffusion coefficient,g is the probability of coalescenc
upon collision, andl and L are geometrical parameters ca
culated for diffusion in a spherical space. The inverse of
first passage time scalest f are the forward folding rateskf

that are used in the rate matrixK̂.
The pairs can also dissociate. In typical diffusion-collisi

model calculations, the form of the unfolding timestb used
for two microdomainsA andB comes from the Van’t Hoff-
Arrhenius law given by

tb5n21eDGAB /kBT, ~3!

where DGAB is the free energy difference between pair
and unpaired states,kB is Boltzmann’s constant,T is the
temperature, andn is an attempt rate. In the case ofa helices
the dominant contribution to the free energy comes from
buried hydrophobic area, and therefore,

DGAB5 f AAB , ~4!

wheref is the free energy change per unit buried hydroph
bic area in the pairing@8# andAAB is the buried area@9#. The
unfolding rateskb are given by the inverse of the unfoldin
timestb .

The diffusion-collision model has been successful in d
scribing the overall folding kinetics of several proteins@10–
12#. In each of these studies a single value of the param
n was used for every unfolding transition. This value w
adjusted to obtain the desired result, namely, to ensure
the protein would fold to its native state. This procedure
justified because the equilibrium~or native! occupation prob-
abilities are known; in fact, for sufficiently simple system
the folding and unfolding rates can be determined from th
probabilities@13#. The typical values used lie between 1 a
1000 ns21, which yields unfolding rates consistent with ob
served rates of bimolecular dissociation@14#.

In cases where the final occupation probabilities are
known, for instance in the studies of protein misfolding a
non-native kinetic intermediates@15# such methods are
clearly not possible. Indeed, even a detailed description
the intermediate folding kinetics of a protein whose fin
©2001 The American Physical Society02-1
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state is known requires a more accurate and foundatio
determination ofn, as was pointed out by Burtonet al. @10#.

In this work we compute unfolding rates that, in the co
text of the diffusion-collision model, can be used for a
given unfolding transition in the study of proteins who
secondary structural elements area helices. From the rate
we find the values of the parametern. This makes the
diffusion-collision model more predictive and enables it
be used in situations where the occupation probabilities
unknown.

II. CALCULATION OF THE UNFOLDING RATES

We model the dissociation of microdomains as a therm
escape event over a barrier. Consider the pair of mic
domains~which could bea helices or clusters ofa helices!
A andB connected by a string, diffusing in the potential we
depicted in Fig. 1. The left boundary is infinite because
the hard-core repulsion of the van der Waals contact betw
the pair. Pairs with energies larger thanEb5 f AAB , the free
energy difference between paired and unpaired states,
escape from the right boundary of the well. The well widthL
is set to the diameter of a water molecule. A separation la
thanL exposes the buried hydrophobic area of the pair to
solvent, the free energy savings is lost, and the pair se
rates, resulting in an escape from the potential well.

The binding energiesEb of microdomain pairs in proteins
are typically much larger than the thermal energy

Eb@kBT. ~5!

This means that the time to escape from the well is m
larger than any other time scale involved in the problem
particular larger than the thermalization~or velocity auto-
correlation! time and larger than the time it takes for the p

FIG. 1. Potential for the two microdomainsA andB. The poten-
tial is infinite on the left because of the hard-core repulsion of
van der Walls contact between the microdomains. The barrie
the right can be crossed by microdomain pairs with energies la
thanEb5 f AAB , the free energy difference between paired and
paired states with a buried hydrophobic areaAAB . The width of the
well L, is taken to be the diameter of a water molecule.
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to diffuse in the well. Consequently, at any one time, t
spatial distribution inside the well of an ensemble of pa
will be homogeneous

r~x,t !}1/L ~6!

and the flux incident on the barriers will be thermal. We w
use these two facts to calculate the rate at which the p
dissociate.

The flux at the boundary on the right~at x5L! depends
on the density of pairs at that boundary and the probab
that their energy is high enough to thermally escape over
boundary. The differential element of flux at the boundaryL
of pairs with relative velocity betweenv andv1dv is given
by

dJout~L,t !5vr~L,t !dN~v !, ~7!

wherer(L,t) is the number density of pairs at the bounda
at a timet,

dN~v !5S m

2pkBTD 1/2

e2mv2/2kBTdv ~8!

is the fraction of pairs with relative velocities betweenv and
v1dv, andm is the reduced mass given by

m5
mAmB

mA1mB
, ~9!

wheremA andmB are the masses of the two microdomain
In order to find the total flux through the outer bounda

at L we must integrate over all velocities larger tha
1AEb/2m since the potential barrier can be crossed by pa
with energies higher thanEb , and pairs with relative veloci-
ties higher than that can contribute to the flux leaving
well. This yields a flux out of the well

Jout~L,t !5r~L,t !S kbT

2pm D 1/2

e2Eb /kBT. ~10!

If the number of pairs inside the well at some timet is n(t)
then, because of Eq.~5!, the number density must b
r(x,t)5n(t)/L everywhere and

Jout~L,t !5
n~ t !

L S kbT

2pm D 1/2

e2Eb /kBT. ~11!

This means that the dissociation rate constant for a pai
microdomains with reduced massm and buried hydrophobic
areaAAB5Eb / f at a temperatureT is

kb5
1

L S kBT

2pm D 1/2

e2Eb /kBT. ~12!

The terms preceding the exponential correspond to our
diction for the Van’t Hoff-Arrhenius attempt raten in Eq.
~3!. As an example, the attempt rate found for a coales
pair of 16-residue Regan-Degrado@16# helices with a com-
bined hydrophobic area loss of 600 Å2 is 643109 s21.
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It is interesting to note that a result similar to Eq.~12!
would have been obtained by assuming the attempt rate t
the inverse of the thermal well-crossing time, namely tak

n;
1

L
AkBT

m
~13!

in Eq. ~3!. This is, in fact, not the origin of the prefactors
Eq. ~12!. They arise as a consequence of Eq.~5!: The factor
of 1/L comes from the homogeneity of the spatial distrib
tion ~6! and the factor ofAkBT/2pm from the integration of
the thermal velocity distribution~8!.

It is possible that dissociation events within a protein a
include a relative rolling and/or sliding motion of the micr
domains. In this case the calculation above can be perfor
with a few minor differences that take into account the ex
degrees of freedom. The relative velocity distribution of t
microdomains is still the one-dimensional Maxwe
Boltzmann distribution because motion parallel to the s
face through which the probability is flowing does not co
tribute to escape from the well. The probability in the bou
region is homogeneously distributed in a two- or thre
dimensional volume in Eq.~10!, and flows out of that vol-
ume through a one- or two-dimensional area. This calcu
tion yields the result

kb5
d

L S kbT

2pm D 1/2

e2Eb /kBT, ~14!

where we setd52 if we include either the rollingor sliding
degrees of freedom, andd53 if both of them are included
Due to the steric clashing of the side chains it seems ra
unlikely that dissociation would include a sliding motio
along the axes of the microdomains. It may be relevant, h
ever, in the context of molten globules.

This approach succeeds in removing the free parametn
from the diffusion-collision model. Moreover, our results f
the one-, two-, and three-dimensional unfolding rates hav
AT/m dependence that could be used to distinguish betw
this and other proposals for the mechanism of microdom
pair dissociation.
c.

d.
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III. CONCLUDING REMARKS

We have presented a calculation for the dissociation
of a microdomain pair using a simple potential barrier ov
which pairs having energies above the free energy of
hydrophobic docking can escape. Since we have not
counted for the energy in hydrogen bonds this result is
evant for the dissociation ofa-helix pairs or helix cluster
pairs only and not for the dissociation ofb-sheet pairs. We
have found the unfolding rates arising from thermal fluctu
tions out of this potential well to be in good agreement w
currently accepted values of the attempt raten.

The motivation of this work was to eliminate the fre
parametern from the diffusion-collision model. In previous
applications of the diffusion-collision model~see for ex-
ample, @10–12#! the folding kinetics from a denatured o
random coil state to the final native state were followed.
such a case, it is reasonable to set the parametern such that
the native state achieves most of the probability, because
know that the final state is attained at the end of the fold
process. However, the removal of this parameter is impor
when considering folding processes that do not involve
native state. For example, in studying intermediate proce
or protein misfolding@15#, where the occupation probabili
ties may be completely unknown, such reasonable estim
of n are not available. In these cases, elimination ofn as a
free parameter is crucial.

The results presented here also predict an}AT/m depen-
dence in all cases that can be distinguished experimen
from other possibilities such asn}T @14#. Another differ-
ence is the dependence of the unfolding rates on the st
not only through the hydrophobic area, but also through
reduced massm of the microdomains undergoing dissoci
tion. This is markedly different from typical diffusion
collision model calculations where the attempt raten is as-
sumed to be the same for all dissociation events within
protein.
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